Eureka

fxz大约 6 分钟interview

Eureka

1.Eureka Server 数据存储

Eureka Server 的数据存储分了二层:数据层和缓存层 数据层记录的是注册到Eureka Server 上的服务信息,缓存层记录包装以后的数据,可以直接在 Eureka Client 调用时返回。 Eureka Server 的数据层是二层 ConcurrentHashMap, ConcurrentHashMap 是线程安全高效的 Map 集合。 第一层的 ConcurrentHashMap 的 key=spring.application.name也就是客户端实例注册的应用名。 第二层嵌套的 ConcurrentHashMap 的 key=instanceId 也就是服务的唯一实例 ID,value 为 Lease 对象,Lease 对象存储着这个实例的所有注册信息,包括 ip 、端口、属性等。 根据这个存储结构我们可以发现,Eureka Server 第一层都是存储着所有的服务名,以及服务名对应的实例信息

Eureka Server 缓存机制

Eureka Server 为了提供响应效率,提供了两层的缓存结构,将 Eureka Client 所需要的注册信息,直接存储在缓存结构中。 第一层缓存:readOnlyCacheMap,本质上是 ConcurrentHashMap,依赖定时从 readWriteCacheMap 同步数据,默认时间为 30 秒。 readOnlyCacheMap : 是一个 CurrentHashMap 只读缓存,这个主要是为了供客户端获取注册信息时使用,其缓存更新,依赖于定时器的更新,通过和 readWriteCacheMap 的值做对比,如果数据不一致,则以 readWriteCacheMap 的数据为准。 第二层缓存:readWriteCacheMap,本质上是 Guava 缓存。 eadWriteCacheMap:readWriteCacheMap 的数据主要同步存储层的数据,当请求获取缓存时判断缓存中是否没有数据,如果不存在此数据,则通过 CacheLoader 的 load 方法去加载,加载成功之后将数据放入缓存,同时返回数据。 readWriteCacheMap 缓存过期时间,默认为 180 秒,当服务下线、过期、注册、状态变更,都会来清除此缓存中的数据。 Eureka Client 获取全量或者增量的数据时,会先从一级缓存中获取;如果一级缓存中不存在,再从二级缓存中获取;如果二级缓存也不存在,这时候先将存储层的数据同步到缓存中,再从缓存中获取。

通过 Eureka Server 的二层缓存机制,可以非常有效地提升 Eureka Server 的响应时间,通过数据存储层和缓存层的数据切割,根据使用场景来提供不同的数据支持。

其它缓存设计

Eureka Server 端存在缓存外,Eureka Client 也同样存在着缓存机制,Eureka Client 启动时会全量拉取服务列表,启动后每隔 30 秒从 Eureka Server 增量获取服务列表信息,并保持在本地缓存中。

Eureka Client 增量拉取失败,或者增量拉取之后对比 hashcode 发现不一致,就会执行全量拉取,这样避免了网络某时段分片带来的问题,同样会更新到本地缓存。 同时对于服务调用,如果涉及到 ribbon 负载均衡,那么 ribbon 对于这个实例列表也有自己的缓存,这个缓存定时(默认30秒)从 Eureka Client 的缓存更新。 这么多的缓存机制可能就会造成一些问题,一个服务启动后可能最长需要 90s 才能被其它服务感知到: 1、首先,Eureka Server 维护每 30s 更新的响应缓存

2、Eureka Client 对已经获取到的注册信息也做了 30s 缓存

3、负载均衡组件 Ribbon 也有 30s 缓存

这三个缓存加起来,就有可能导致服务注册最长延迟 90s ,这个需要我们在特殊业务场景中注意其产生的影响。